In order to specify the set of visible moves of an indexed interaction tree, we use the notion of indexed polynomial functor. See "Indexed Containers" by Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and Peter Morris.
In our interaction-oriented nomenclature, an indexed container consists of a family of queries e_qry, a family of responses e_rsp and a function assigning the next index to each response e_nxt.
Record event (I J : Type) : Type := Event {
e_qry : I -> Type ;
e_rsp : forall i, e_qry i -> Type ;
e_nxt : forall i (q : e_qry i), e_rsp i q -> J
}.
Natural transformation, ie the notion of morphism for such structures is given by the following data.
Record earr {I J} (A B : event I J) : Type := EArr {
ea_qry : forall i, A.(e_qry) i -> B.(e_qry) i ;
ea_rsp : forall i a, B.(e_rsp) (ea_qry i a) -> A.(e_rsp) a ;
ea_nxt : forall i a b, A.(e_nxt) (ea_rsp i a b) = B.(e_nxt) b
}.
#[global] Notation "A ββ B" := (earr A B) (at level 50).
Finally we can interpret an event as a functor from families over J to families over I.
Definition e_interp {I J} (E : event I J) (X : psh J) : psh I :=
fun i => { q : E.(e_qry) i & forall (r : E.(e_rsp) q), X (E.(e_nxt) r) } .
We define the empty event.
Definition emptyβ {I} : event I I := {| e_qry := fun _ => T0 ; e_rsp := fun _ => ex_falso ; e_nxt := fun _ x => ex_falso x |}. #[global] Notation "β β" := (emptyβ). Definition ex_falsoβ {I} {E : event I I} : β β ββ E := {| ea_qry := fun _ (q : β β.(e_qry) _) => match q with end ; ea_rsp := fun _ q => match q with end ; ea_nxt := fun _ q => match q with end |}.