The iter combinator, adapted directly from the Interaction Tree library, happily builds a computation iter f for any set of equations f. The resulting computation satisfies in particular an unfolding equation: iter f i ≈ f i >>= case_ (iter f) (ret) In general, this solution is however not unique, depriving us from a powerful tool to prove the equivalence of two computations.
Through this file, we recover uniqueness by introducing an alternate combinator iter_guarded restricted to so-called guarded sets of equations: they cannot be reduced to immediately returning a new index to iterate over. Both combinators agree over guarded equations (w.r.t. to weak bisimilarity), but the new one satisfies uniqueness.
Then, we refine the result to allow more sets of equations: not all must be guarded, but they must always finitely lead to a guarded one.
Section guarded. Context {I} {E : event I I}.
A set of equations is an (indexed) family of computations, i.e. body fed to the combinator (Def. 30).
Definition eqn R X Y : Type := X ⇒ᵢ itree E (Y +ᵢ R) . Definition apply_eqn {R X Y} (q : eqn R X Y) : itree E (X +ᵢ R) ⇒ᵢ itree E (Y +ᵢ R) := fun _ t => t >>= fun _ r => match r with | inl x => q _ x | inr y => Ret' (inr y) end .
A computation is guarded if it is not reduced to Ret (inl i), i.e. if as part of the loop, this specific iteration will be observable w.r.t. strong bisimilarity. It therefore may:
A set of equation is then said to be guarded if all its equations are guarded (Def. 33).
Variant guarded' {X Y i} : itree' E (X +ᵢ Y) i -> Prop := | GRet y : guarded' (RetF (inr y)) | GTau t : guarded' (TauF t) | GVis e k : guarded' (VisF e k) . Definition guarded {X Y i} (t : itree E (X +ᵢ Y) i) := guarded' t.(_observe). Definition eqn_guarded {R X Y} (e : eqn R X Y) : Prop := forall i (x : X i), guarded (e i x) .
The iter combinator gets away with putting no restriction on the equations by aggressively guarding with Tau all recursive calls. In contrast, by assuming the equations are guarded, we do not need to introduce any spurious guard: they are only legitimate in the case of returning immediately a new index, which we can here rule out via elim_guarded.
Equations elim_guarded {R X i x} : @guarded' R X i (RetF (inl x)) -> T0 := | ! . Definition iter_guarded_aux {R X} (e : eqn R X X) (EG : eqn_guarded e) : itree E (X +ᵢ R) ⇒ᵢ itree E R := cofix CIH i t := t >>= fun _ r => go match r with | inl x => match (e _ x).(_observe) as t return guarded' t -> _ with | RetF (inl x) => fun g => ex_falso (elim_guarded g) | RetF (inr r) => fun _ => RetF r | TauF t => fun _ => TauF (CIH _ t) | VisF q k => fun _ => VisF q (fun r => CIH _ (k r)) end (EG _ x) | inr y => RetF y end .
A better iteration for guarded equations.
Definition iter_guarded {R X} (f : eqn R X X) (EG : eqn_guarded f) : X ⇒ᵢ itree E R := fun _ x => go (match (f _ x).(_observe) as t return guarded' t -> _ with | RetF (inl x) => fun g => ex_falso (elim_guarded g) | RetF (inr r) => fun _ => RetF r | TauF t => fun _ => TauF (iter_guarded_aux f EG _ t) | VisF q k => fun _ => VisF q (fun r => iter_guarded_aux f EG _ (k r)) end (EG _ x)) .
The absence of a spurious guard is reflected in the unfolding equation: w.r.t. strong bisimilarity, it directly satisfies what one would expect, i.e. we run the current equation, and either terminate or jump to the next one.
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
i: I
t: itree E (X +ᵢ Y) iit_eq RY (iter_guarded_aux f EG i t) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
i: I
t: itree E (X +ᵢ Y) iit_eq RY (iter_guarded_aux f EG i t) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t: itree E (X +ᵢ Y) iit_eq_bt E RY R i (iter_guarded_aux f EG i t) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t: itree E (X +ᵢ Y) i
ot:= _observe t: itree' E (X +ᵢ Y) iit_eqF E RY (it_eq_t E RY R) i match ot with | RetF (inl x) => match _observe (f i x) as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x0 => ex_falso ∘ elim_guarded | inr r1 => fun _ : guarded' (RetF (inr r1)) => RetF r1 end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r0 : e_rsp q => iter_guarded_aux f EG (e_nxt r0) (k r0)) end (EG i x) | RetF (inr y) => RetF y | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => match _observe (f i x) as t0 return (guarded' t0 -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x0 => ex_falso ∘ elim_guarded | inr r1 => fun _ : guarded' (RetF (inr r1)) => RetF r1 end | TauF t0 => fun _ : guarded' (TauF t0) => TauF (iter_guarded_aux f EG i t0) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r0 : e_rsp q => iter_guarded_aux f EG (e_nxt r0) (k r0)) end (EG i x) | inr y => RetF y end |}) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => {| _observe := match r0 with | inl x => match _observe (f i x) as t return (guarded' t -> itree' E Y i) with | RetF r1 => match r1 as r2 return (guarded' (RetF r2) -> itree' E Y i) with | inl x0 => ex_falso ∘ elim_guarded | inr r2 => fun _ : guarded' (RetF (inr r2)) => RetF r2 end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k0 => fun _ : guarded' (VisF q k0) => VisF q (fun r1 : e_rsp q => iter_guarded_aux f EG (e_nxt r1) (k0 r1)) end (EG i x) | inr y => RetF y end |}) =<< k r) end match ot with | RetF r => _observe match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< k r) endI: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t: itree E (X +ᵢ Y) i
x: X iit_eqF E RY (it_eq_t E RY R) i (match _observe (f i x) as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x => ex_falso ∘ elim_guarded | inr r => fun _ : guarded' (RetF (inr r)) => RetF r end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r : e_rsp q => iter_guarded_aux f EG (e_nxt r) (k r)) end (EG i x)) (match _observe (f i x) as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x => ex_falso ∘ elim_guarded | inr r => fun _ : guarded' (RetF (inr r)) => RetF r end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r : e_rsp q => iter_guarded_aux f EG (e_nxt r) (k r)) end (EG i x))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t: itree E (X +ᵢ Y) i
y: Y iit_eqF E RY (it_eq_t E RY R) i (RetF y) (RetF y)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t, t0: itree E (X +ᵢ Y) iit_eqF E RY (it_eq_t E RY R) i (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => match _observe (f i x) as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x0 => ex_falso ∘ elim_guarded | inr r1 => fun _ : guarded' (RetF (inr r1)) => RetF r1 end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r0 : e_rsp q => iter_guarded_aux f EG (e_nxt r0) (k r0)) end (EG i x) | inr y => RetF y end |}) =<< t0)) (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< t0))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t: itree E (X +ᵢ Y) i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)it_eqF E RY (it_eq_t E RY R) i (VisF q (fun r : e_rsp q => (fun (i : I) (r0 : (X +ᵢ Y) i) => {| _observe := match r0 with | inl x => match _observe (f i x) as t return (guarded' t -> itree' E Y i) with | RetF r1 => match r1 as r2 return (guarded' (RetF r2) -> itree' E Y i) with | inl x0 => ex_falso ∘ elim_guarded | inr r2 => fun _ : guarded' (RetF (inr r2)) => RetF r2 end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r1 : e_rsp q => iter_guarded_aux f EG (e_nxt r1) (k r1)) end (EG i x) | inr y => RetF y end |}) =<< k r)) (VisF q (fun r : e_rsp q => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< k r))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t: itree E (X +ᵢ Y) i
x: X i
y: Y iit_eqF E RY (it_eq_t E RY R) i (RetF y) (RetF y)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t: itree E (X +ᵢ Y) i
x: X i
t0: itree E (X +ᵢ Y) iit_eqF E RY (it_eq_t E RY R) i (TauF (iter_guarded_aux f EG i t0)) (TauF (iter_guarded_aux f EG i t0))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t: itree E (X +ᵢ Y) i
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)it_eqF E RY (it_eq_t E RY R) i (VisF e (fun r : e_rsp e => iter_guarded_aux f EG (e_nxt r) (k r))) (VisF e (fun r : e_rsp e => iter_guarded_aux f EG (e_nxt r) (k r)))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t: itree E (X +ᵢ Y) i
y: Y iit_eqF E RY (it_eq_t E RY R) i (RetF y) (RetF y)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t, t0: itree E (X +ᵢ Y) iit_eqF E RY (it_eq_t E RY R) i (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => match _observe (f i x) as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x0 => ex_falso ∘ elim_guarded | inr r1 => fun _ : guarded' (RetF (inr r1)) => RetF r1 end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r0 : e_rsp q => iter_guarded_aux f EG (e_nxt r0) (k r0)) end (EG i x) | inr y => RetF y end |}) =<< t0)) (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< t0))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t: itree E (X +ᵢ Y) i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)it_eqF E RY (it_eq_t E RY R) i (VisF q (fun r : e_rsp q => (fun (i : I) (r0 : (X +ᵢ Y) i) => {| _observe := match r0 with | inl x => match _observe (f i x) as t return (guarded' t -> itree' E Y i) with | RetF r1 => match r1 as r2 return (guarded' (RetF r2) -> itree' E Y i) with | inl x0 => ex_falso ∘ elim_guarded | inr r2 => fun _ : guarded' (RetF (inr r2)) => RetF r2 end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r1 : e_rsp q => iter_guarded_aux f EG (e_nxt r1) (k r1)) end (EG i x) | inr y => RetF y end |}) =<< k r)) (VisF q (fun r : e_rsp q => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< k r))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t, t0: itree E (X +ᵢ Y) iit_eq_t E RY R i ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => match _observe (f i x) as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x0 => ex_falso ∘ elim_guarded | inr r1 => fun _ : guarded' (RetF (inr r1)) => RetF r1 end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r0 : e_rsp q => iter_guarded_aux f EG (e_nxt r0) (k r0)) end (EG i x) | inr y => RetF y end |}) =<< t0) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< t0)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t: itree E (X +ᵢ Y) i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)forall r : e_rsp q, it_eq_t E RY R (e_nxt r) ((fun (i : I) (r0 : (X +ᵢ Y) i) => {| _observe := match r0 with | inl x => match _observe (f i x) as t return (guarded' t -> itree' E Y i) with | RetF r1 => match r1 as r2 return (guarded' (RetF r2) -> itree' E Y i) with | inl x0 => ex_falso ∘ elim_guarded | inr r2 => fun _ : guarded' (RetF (inr r2)) => RetF r2 end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r1 : e_rsp q => iter_guarded_aux f EG (e_nxt r1) (k r1)) end (EG i x) | inr y => RetF y end |}) =<< k r) ((fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< k r)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t, t0: itree E (X +ᵢ Y) iit_eq_t E RY R i ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => match _observe (f i x) as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x0 => ex_falso ∘ elim_guarded | inr r1 => fun _ : guarded' (RetF (inr r1)) => RetF r1 end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r0 : e_rsp q => iter_guarded_aux f EG (e_nxt r0) (k r0)) end (EG i x) | inr y => RetF y end |}) =<< t0) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< t0)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t: itree E (X +ᵢ Y) i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
r: e_rsp qit_eq_t E RY R (e_nxt r) ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => match _observe (f i x) as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x0 => ex_falso ∘ elim_guarded | inr r1 => fun _ : guarded' (RetF (inr r1)) => RetF r1 end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r0 : e_rsp q => iter_guarded_aux f EG (e_nxt r0) (k r0)) end (EG i x) | inr y => RetF y end |}) =<< k r) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< k r)all: intros ? ? x2 ->; destruct x2; auto. Qed.I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t, t0: itree E (X +ᵢ Y) iforall (i : I) (x1 x2 : (X +ᵢ Y) i), eqᵢ (X +ᵢ Y) i x1 x2 -> it_eq_t E RY R i {| _observe := match x1 with | inl x => match _observe (f i x) as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x0 => ex_falso ∘ elim_guarded | inr r => fun _ : guarded' (RetF (inr r)) => RetF r end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r : e_rsp q => iter_guarded_aux f EG (e_nxt r) (k r)) end (EG i x) | inr y => RetF y end |} match x2 with | inl x => iter_guarded f EG i x | inr y => Ret' y endI: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), it_eq_t E RY R i (iter_guarded_aux f EG i t0) (t0 >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_guarded f EG i0 x | inr y => Ret' y end))
i: I
t: itree E (X +ᵢ Y) i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
r: e_rsp qforall (i : I) (x1 x2 : (X +ᵢ Y) i), eqᵢ (X +ᵢ Y) i x1 x2 -> it_eq_t E RY R i {| _observe := match x1 with | inl x => match _observe (f i x) as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x0 => ex_falso ∘ elim_guarded | inr r => fun _ : guarded' (RetF (inr r)) => RetF r end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r : e_rsp q => iter_guarded_aux f EG (e_nxt r) (k r)) end (EG i x) | inr y => RetF y end |} match x2 with | inl x => iter_guarded f EG i x | inr y => Ret' y end
Guarded iteration is a fixed point of the equation w.r.t. strong bisimilarity.
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
i: I
x: X iit_eq RY (iter_guarded f EG i x) (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
i: I
x: X iit_eq RY (iter_guarded f EG i x) (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
i: I
x: X iit_eqF E RY (it_eq RY) i (match _observe (f i x) as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x => ex_falso ∘ elim_guarded | inr r => fun _ : guarded' (RetF (inr r)) => RetF r end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r : e_rsp q => iter_guarded_aux f EG (e_nxt r) (k r)) end (EG i x)) match _observe (f i x) with | RetF r => _observe match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< k r) endI: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
i: I
x: X i
p:= EG i x: guarded' (_observe (f i x))it_eqF E RY (it_eq RY) i (match _observe (f i x) as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x => ex_falso ∘ elim_guarded | inr r => fun _ : guarded' (RetF (inr r)) => RetF r end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r : e_rsp q => iter_guarded_aux f EG (e_nxt r) (k r)) end p) match _observe (f i x) with | RetF r => _observe match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< k r) enddestruct p; econstructor; [ now apply H | | intro r ]; apply iter_guarded_aux_unfold. Qed.I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
i: I
x: X i
ot:= _observe (f i x): itree' E (X +ᵢ Y) i
p:= EG i x: guarded' otit_eqF E RY (it_eq RY) i (match ot as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x => ex_falso ∘ elim_guarded | inr r => fun _ : guarded' (RetF (inr r)) => RetF r end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux f EG i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r : e_rsp q => iter_guarded_aux f EG (e_nxt r) (k r)) end p) match ot with | RetF r => _observe match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< k r) end
The payoff: iter_guarded does not only deliver a solution to the equations, but it also is the unique such.
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))forall (i : I) (x : X i), it_eq RY (g i x) (iter_guarded f EG i x)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))forall (i : I) (x : X i), it_eq RY (g i x) (iter_guarded f EG i x)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X iit_eq_bt E RY R i (g i x) (iter_guarded f EG i x)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X iit_eq_bt E RY R i (g i x) (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X iit_eqF E RY (it_eq_t E RY R) i match _observe (f i x) with | RetF r => _observe match r with | inl x => g i x | inr y => Ret' y end | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => g i x | inr y => Ret' y end) =<< k r) end match _observe (f i x) with | RetF r => _observe match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< k r) endI: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
a:= _observe (f i x): itree' E (X +ᵢ Y) iit_eqF E RY (it_eq_t E RY R) i match a with | RetF r => _observe match r with | inl x => g i x | inr y => Ret' y end | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => g i x | inr y => Ret' y end) =<< k r) end match a with | RetF r => _observe match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< k r) endI: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
a:= _observe (f i x): itree' E (X +ᵢ Y) i
Ha:= EG i x: guarded' ait_eqF E RY (it_eq_t E RY R) i match a with | RetF r => _observe match r with | inl x => g i x | inr y => Ret' y end | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => g i x | inr y => Ret' y end) =<< k r) end match a with | RetF r => _observe match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< k r) endI: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
t: itree E (X +ᵢ Y) iit_eq_t E RY R i ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end) =<< t) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< t)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
r: e_rsp eit_eq_t E RY R (e_nxt r) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end) =<< k r) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< k r)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
t: itree E (X +ᵢ Y) iit_eq_t E RY R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
r: e_rsp eit_eq_t E RY R (e_nxt r) (k r >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (k r >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i(it_eq_t E RY ° it_eq_t E RY) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
r: e_rsp e(it_eq_t E RY ° it_eq_t E RY) R (e_nxt r) (k r >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (k r >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end))all: intros ? ? ? <-; destruct x1; auto. Qed.I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
t: itree E (X +ᵢ Y) iforall (i : I) (x1 x2 : (X +ᵢ Y) i), eqᵢ (X +ᵢ Y) i x1 x2 -> it_eq_t E RY R i match x1 with | inl x => g i x | inr y => Ret' y end match x2 with | inl x => iter_guarded f EG i x | inr y => Ret' y endI: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
r: e_rsp eforall (i : I) (x1 x2 : (X +ᵢ Y) i), eqᵢ (X +ᵢ Y) i x1 x2 -> it_eq_t E RY R i match x1 with | inl x => g i x | inr y => Ret' y end match x2 with | inl x => iter_guarded f EG i x | inr y => Ret' y end
Furthermore, w.r.t. weak bisimilarity, we compute the same solution as what iter does.
I: Type
E: event I I
X, Y: psh I
i: I
s, t: itree' E (X +ᵢ Y) i
EQ: it_eq' (eqᵢ (X +ᵢ Y)) s t
g: guarded' sguarded' tdestruct EQ as [ [] | | ]; [ dependent elimination g | rewrite <- r_rel | | ]; econstructor. Qed. Definition guarded_cong {X Y} {i} (s t : itree E (X +ᵢ Y) i) (EQ : s ≊ t) (g : guarded s) : guarded t := guarded_cong' s.(_observe) t.(_observe) (it_eq_step _ _ _ EQ) g .I: Type
E: event I I
X, Y: psh I
i: I
s, t: itree' E (X +ᵢ Y) i
EQ: it_eq' (eqᵢ (X +ᵢ Y)) s t
g: guarded' sguarded' t
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
i: I
x: X iiter_guarded f EG i x ≈ iter f i xI: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
i: I
x: X iiter_guarded f EG i x ≈ iter f i xI: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X iit_wbisim_bt E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i(eq_clo_map ° it_wbisim_bt E (eqᵢ Y)) R i (iter_guarded f EG i x) (iter f i x)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X iiter_guarded f EG i x ≊ ?aI: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i?b ≊ iter f i xI: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X iit_wbisim_bt E (eqᵢ Y) R i ?a ?bI: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i?b ≊ iter f i xI: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X iit_wbisim_bt E (eqᵢ Y) R i (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end)) ?bI: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X iit_wbisim_bt E (eqᵢ Y) R i (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end)) (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
g: guarded (f i x)it_wbisim_bt E (eqᵢ Y) R i (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end)) (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
g: guarded tit_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
g: guarded' (_observe t)it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
ot: itree' E (X +ᵢ Y) i
Heqot: ot = _observe t
g: guarded' otit_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
y: Y i
Heqot: RetF (inr y) = _observe tit_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i (RetF y) (RetF y)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t, t0: itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe tit_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< t0)) (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}) =<< t0))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
Heqot: VisF e k = _observe tit_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i (VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< k r)) (VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => {| _observe := match r0 with | inl x => TauF (iter f i x) | inr y => RetF y end |}) =<< k r))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t, t0: itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe tit_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< t0)) (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}) =<< t0))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
Heqot: VisF e k = _observe tit_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i (VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< k r)) (VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => {| _observe := match r0 with | inl x => TauF (iter f i x) | inr y => RetF y end |}) =<< k r))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t, t0: itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe tit_wbisim_t E (eqᵢ Y) R i ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< t0) ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}) =<< t0)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
Heqot: VisF e k = _observe t
r: e_rsp eit_wbisim_t E (eqᵢ Y) R (e_nxt r) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< k r) ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}) =<< k r)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t, t0: itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe t(it_wbisim_t E (eqᵢ Y) ° it_wbisim_t E (eqᵢ Y)) R i ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< t0) ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}) =<< t0)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
Heqot: VisF e k = _observe t
r: e_rsp e(it_wbisim_t E (eqᵢ Y) ° it_wbisim_t E (eqᵢ Y)) R (e_nxt r) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded f EG i x | inr y => Ret' y end) =<< k r) ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}) =<< k r)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t, t0: itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe tforall (i : I) (x1 x2 : (X +ᵢ Y) i), eqᵢ (X +ᵢ Y) i x1 x2 -> it_wbisim_t E (eqᵢ Y) R i match x1 with | inl x => iter_guarded f EG i x | inr y => Ret' y end {| _observe := match x2 with | inl x => TauF (iter f i x) | inr y => RetF y end |}I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
Heqot: VisF e k = _observe t
r: e_rsp eforall (i : I) (x1 x2 : (X +ᵢ Y) i), eqᵢ (X +ᵢ Y) i x1 x2 -> it_wbisim_t E (eqᵢ Y) R i match x1 with | inl x => iter_guarded f EG i x | inr y => Ret' y end {| _observe := match x2 with | inl x => TauF (iter f i x) | inr y => RetF y end |}I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t, t0: itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe t
i0: I
x0: X i0it_wbisim_t E (eqᵢ Y) R i0 (iter_guarded f EG i0 x0) (Tau' (iter f i0 x0))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
Heqot: VisF e k = _observe t
r: e_rsp e
i0: I
x0: X i0it_wbisim_t E (eqᵢ Y) R i0 (iter_guarded f EG i0 x0) (Tau' (iter f i0 x0))all: cbn; apply it_wbisim_up2eat; econstructor; [ exact EatRefl | exact (EatStep EatRefl) | apply CIH ]. Qed.I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t, t0: itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe t
i0: I
x0: X i0(it_wbisim_t E (eqᵢ Y) ° it_wbisim_t E (eqᵢ Y)) R i0 (iter_guarded f EG i0 x0) (Tau' (iter f i0 x0))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
Heqot: VisF e k = _observe t
r: e_rsp e
i0: I
x0: X i0(it_wbisim_t E (eqᵢ Y) ° it_wbisim_t E (eqᵢ Y)) R i0 (iter_guarded f EG i0 x0) (Tau' (iter f i0 x0))
Minor technical lemmas: guardedness is proof irrelevant.
destruct t; dependent elimination p; dependent elimination q; reflexivity. Qed.I: Type
E: event I I
R, X: psh I
i: I
t: itree' E (R +ᵢ X) i
p, q: guarded' tp = qapply guarded'_irrelevant. Qed. End guarded.I: Type
E: event I I
R, X: psh I
i: I
t: itree E (R +ᵢ X) i
p, q: guarded tp = q
For our purpose, proving the soundness of the ogs, guardedness is a bit too restrictive: while not all equations are guarded, they all inductively lead to a guarded one. We capture this intuition via the notion of "eventually guarded" set of equations, and establish similar result to ones in the guarded case (these properties are collectively refered to as Prop. 5 in the paper).
Section eventually_guarded. Context {I} {E : event I I}.
A set of equations is eventually guarded if they all admit an inductive path following its non-guarded indirections that leads to a guarded equation (Def. 34).
Unset Elimination Schemes. Inductive ev_guarded' {X Y} (e : eqn Y X X) {i} : itree' E (X +ᵢ Y) i -> Prop := | GHead t : guarded' t -> ev_guarded' e t | GNext x : ev_guarded' e (e i x).(_observe) -> ev_guarded' e (RetF (inl x)) . #[global] Arguments GHead {X Y e i t}. #[global] Arguments GNext {X Y e i x}. Scheme ev_guarded'_ind := Induction for ev_guarded' Sort Prop. Set Elimination Schemes. Definition ev_guarded {X Y} (e : eqn Y X X) {i} (t : itree E (X +ᵢ Y) i) := ev_guarded' e t.(_observe). Definition eqn_ev_guarded {X Y} (e : eqn Y X X) : Type := forall i (x : X i), ev_guarded e (e i x) . Equations elim_ev_guarded' {X Y e i x} (g : @ev_guarded' X Y e i (RetF (inl x))) : ev_guarded' e (e i x).(_observe) := elim_ev_guarded' (GNext g) := g .
Given eventually guarded equations e, we can build a set of guarded equations eqn_evg_unroll_guarded e: we simply map all indices to their reachable guarded equations. Iteration over eventually guarded equations is hence defined as guarded iteration over their guarded counterpart.
Fixpoint evg_unroll' {X Y} (e : eqn Y X X) {i} (t : itree' E (X +ᵢ Y) i) (g : ev_guarded' e t) { struct g } : itree' E (X +ᵢ Y) i := match t as t' return ev_guarded' e t' -> _ with | RetF (inl x) => fun g => evg_unroll' e (e _ x).(_observe) (elim_ev_guarded' g) | RetF (inr y) => fun _ => RetF (inr y) | TauF t => fun _ => TauF t | VisF q k => fun _ => VisF q k end g . Definition evg_unroll {X Y} (e : eqn Y X X) {i} (t : itree E (X +ᵢ Y) i) (g : ev_guarded e t) : itree E (X +ᵢ Y) i := go (evg_unroll' e t.(_observe) g) . Definition eqn_evg_unroll {X Y} (e : eqn Y X X) (H : eqn_ev_guarded e) : eqn Y X X := fun _ x => evg_unroll e _ (H _ x) .I: Type
E: event I I
X, Y: psh I
e: eqn Y X X
i: I
t: itree' E (X +ᵢ Y) i
g: ev_guarded' e tguarded' (evg_unroll' e t g)I: Type
E: event I I
X, Y: psh I
e: eqn Y X X
i: I
t: itree' E (X +ᵢ Y) i
g: ev_guarded' e tguarded' (evg_unroll' e t g)I: Type
E: event I I
X, Y: psh I
e: eqn Y X X
i: I
t: itree' E (X +ᵢ Y) i
g: guarded' tguarded' (evg_unroll' e t (GHead g))dependent elimination g. Qed. Definition evg_unroll_guarded {X Y} (e : eqn Y X X) {i} (t : itree E (X +ᵢ Y) i) (EG : ev_guarded e t) : guarded (evg_unroll e t EG) := evg_unroll_guarded' e t.(_observe) EG. Definition eqn_evg_unroll_guarded {X Y} (e : eqn Y X X) (EG : eqn_ev_guarded e) : eqn_guarded (eqn_evg_unroll e EG) := fun _ x => evg_unroll_guarded e _ (EG _ x) .I: Type
E: event I I
X, Y: psh I
e: eqn Y X X
i: I
x: X i
g: guarded' (RetF (inl x))guarded' (evg_unroll' e (RetF (inl x)) (GHead g))
Definition iter_ev_guarded {R X} (e : eqn R X X) (EG : eqn_ev_guarded e) : X ⇒ᵢ itree E R := fun _ x => iter_guarded _ (eqn_evg_unroll_guarded e EG) _ x .
Once again, we establish the expected unfolding lemma, for eventually guarded iteration.
I: Type
E: event I I
X, Y: psh I
e: eqn Y X X
i: I
x: X i
g: ev_guarded' e (RetF (inl x))evg_unroll' e (RetF (inl x)) g = evg_unroll' e (_observe (e i x)) (elim_ev_guarded' g)dependent elimination g; [ dependent elimination g | reflexivity ] . Qed.I: Type
E: event I I
X, Y: psh I
e: eqn Y X X
i: I
x: X i
g: ev_guarded' e (RetF (inl x))evg_unroll' e (RetF (inl x)) g = evg_unroll' e (_observe (e i x)) (elim_ev_guarded' g)I: Type
E: event I I
R, X: psh I
e: eqn X R R
i: I
t: itree' E (R +ᵢ X) i
p, q: ev_guarded' e tp = qI: Type
E: event I I
R, X: psh I
e: eqn X R R
i: I
t: itree' E (R +ᵢ X) i
p, q: ev_guarded' e tp = qI: Type
E: event I I
R, X: psh I
e: eqn X R R
i: I
t: itree' E (R +ᵢ X) i
g: guarded' t
q: ev_guarded' e tGHead g = qI: Type
E: event I I
R, X: psh I
e: eqn X R R
i: I
x: R i
p: ev_guarded' e (_observe (e i x))
q: ev_guarded' e (RetF (inl x))
IHp: forall q : ev_guarded' e (_observe (e i x)), p = qGNext p = qdestruct t as [ [] | | ]; [ dependent elimination g | | | ]; dependent elimination q; f_equal; apply guarded'_irrelevant.I: Type
E: event I I
R, X: psh I
e: eqn X R R
i: I
t: itree' E (R +ᵢ X) i
g: guarded' t
q: ev_guarded' e tGHead g = qdependent elimination q; [ dependent elimination g | ]; f_equal; apply IHp. Qed.I: Type
E: event I I
R, X: psh I
e: eqn X R R
i: I
x: R i
p: ev_guarded' e (_observe (e i x))
q: ev_guarded' e (RetF (inl x))
IHp: forall q : ev_guarded' e (_observe (e i x)), p = qGNext p = qI: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i
p: _observe (f i x1) = RetF (inl x2)it_eq RY (iter_ev_guarded f EG i x1) (iter_ev_guarded f EG i x2)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i
p: _observe (f i x1) = RetF (inl x2)it_eq RY (iter_ev_guarded f EG i x1) (iter_ev_guarded f EG i x2)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i
p: _observe (f i x1) = RetF (inl x2)it_eq RY (iter_guarded (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) i x1) (iter_ev_guarded f EG i x2)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i
p: _observe (f i x1) = RetF (inl x2)it_eq RY (eqn_evg_unroll f EG i x1 >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_guarded (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) i x | inr y => Ret' y end)) (iter_ev_guarded f EG i x2)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i
p: _observe (f i x1) = RetF (inl x2)it_eq RY (eqn_evg_unroll f EG i x1 >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (iter_ev_guarded f EG i x2)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i
p: _observe (f i x1) = RetF (inl x2)
q: ev_guarded f (f i x1)it_eq RY (evg_unroll f (f i x1) q >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (iter_ev_guarded f EG i x2)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i
p: _observe (f i x1) = RetF (inl x2)
q: ev_guarded f (f i x1)it_eqF E RY (it_eq RY) i match evg_unroll' f (_observe (f i x1)) q with | RetF r => _observe match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r) end (observe (iter_ev_guarded f EG i x2))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i
q: ev_guarded' f (RetF (inl x2))it_eqF E RY (it_eq RY) i match evg_unroll' f (RetF (inl x2)) q with | RetF r => _observe match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r) end (observe (iter_ev_guarded f EG i x2))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X iit_eqF E RY (it_eq RY) i match evg_unroll' f (_observe (f i x2)) (EG i x2) with | RetF r => _observe match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r) end (observe (iter_ev_guarded f EG i x2))apply it_eq_step; symmetry; exact (iter_guarded_unfold _ _). Qed.I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X iit_eq_map E RY (it_eq RY) i (evg_unroll f (f i x2) (EG i x2) >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x => iter_ev_guarded f EG i0 x | inr y => Ret' y end)) (iter_ev_guarded f EG i x2)
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X iit_eq RY (iter_ev_guarded f EG i x) (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X iit_eq RY (iter_ev_guarded f EG i x) (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X iit_eqF E RY (it_eq RY) i (observe (iter_ev_guarded f EG i x)) match _observe (f i x) with | RetF r => _observe match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r) endI: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
g: ev_guarded' f (_observe (f i x))it_eqF E RY (it_eq RY) i (observe (iter_ev_guarded f EG i x)) match _observe (f i x) with | RetF r => _observe match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r) endI: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
i0: itree' E (X +ᵢ Y) i
Heqi0: i0 = _observe (f i x)
g: ev_guarded' f i0it_eqF E RY (it_eq RY) i (observe (iter_ev_guarded f EG i x)) match i0 with | RetF r => _observe match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end | TauF t => TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t) | VisF e k => VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r) endI: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x, x0: X i
Heqi0: RetF (inl x0) = _observe (f i x)
g: ev_guarded' f (RetF (inl x0))it_eqF E RY (it_eq RY) i (observe (iter_ev_guarded f EG i x)) (_observe (iter_ev_guarded f EG i x0))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
y: Y i
Heqi0: RetF (inr y) = _observe (f i x)
g: ev_guarded' f (RetF (inr y))it_eqF E RY (it_eq RY) i (observe (iter_ev_guarded f EG i x)) (_observe (Ret' y))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
t: itree E (X +ᵢ Y) i
Heqi0: TauF t = _observe (f i x)
g: ev_guarded' f (TauF t)it_eqF E RY (it_eq RY) i (observe (iter_ev_guarded f EG i x)) (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
Heqi0: VisF q k = _observe (f i x)
g: ev_guarded' f (VisF q k)it_eqF E RY (it_eq RY) i (observe (iter_ev_guarded f EG i x)) (VisF q (fun r : e_rsp q => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
y: Y i
Heqi0: RetF (inr y) = _observe (f i x)
g: ev_guarded' f (RetF (inr y))it_eqF E RY (it_eq RY) i (observe (iter_ev_guarded f EG i x)) (_observe (Ret' y))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
t: itree E (X +ᵢ Y) i
Heqi0: TauF t = _observe (f i x)
g: ev_guarded' f (TauF t)it_eqF E RY (it_eq RY) i (observe (iter_ev_guarded f EG i x)) (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
Heqi0: VisF q k = _observe (f i x)
g: ev_guarded' f (VisF q k)it_eqF E RY (it_eq RY) i (observe (iter_ev_guarded f EG i x)) (VisF q (fun r : e_rsp q => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
y: Y i
Heqi0: RetF (inr y) = _observe (f i x)it_eqF E RY (it_eq RY) i (match evg_unroll' f (_observe (f i x)) (EG i x) as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x => ex_falso ∘ elim_guarded | inr r => fun _ : guarded' (RetF (inr r)) => RetF r end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r : e_rsp q => iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) (e_nxt r) (k r)) end (evg_unroll_guarded' f (_observe (f i x)) (EG i x))) (RetF y)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
t: itree E (X +ᵢ Y) i
Heqi0: TauF t = _observe (f i x)it_eqF E RY (it_eq RY) i (match evg_unroll' f (_observe (f i x)) (EG i x) as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x => ex_falso ∘ elim_guarded | inr r => fun _ : guarded' (RetF (inr r)) => RetF r end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r : e_rsp q => iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) (e_nxt r) (k r)) end (evg_unroll_guarded' f (_observe (f i x)) (EG i x))) (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
Heqi0: VisF q k = _observe (f i x)it_eqF E RY (it_eq RY) i (match evg_unroll' f (_observe (f i x)) (EG i x) as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x => ex_falso ∘ elim_guarded | inr r => fun _ : guarded' (RetF (inr r)) => RetF r end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r : e_rsp q => iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) (e_nxt r) (k r)) end (evg_unroll_guarded' f (_observe (f i x)) (EG i x))) (VisF q (fun r : e_rsp q => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
y: Y i
Heqi0: RetF (inr y) = _observe (f i x)
g': ev_guarded' f (_observe (f i x))it_eqF E RY (it_eq RY) i (match evg_unroll' f (_observe (f i x)) g' as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x => ex_falso ∘ elim_guarded | inr r => fun _ : guarded' (RetF (inr r)) => RetF r end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r : e_rsp q => iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) (e_nxt r) (k r)) end (evg_unroll_guarded' f (_observe (f i x)) g')) (RetF y)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
t: itree E (X +ᵢ Y) i
Heqi0: TauF t = _observe (f i x)
g': ev_guarded' f (_observe (f i x))it_eqF E RY (it_eq RY) i (match evg_unroll' f (_observe (f i x)) g' as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x => ex_falso ∘ elim_guarded | inr r => fun _ : guarded' (RetF (inr r)) => RetF r end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r : e_rsp q => iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) (e_nxt r) (k r)) end (evg_unroll_guarded' f (_observe (f i x)) g')) (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
Heqi0: VisF q k = _observe (f i x)
g': ev_guarded' f (_observe (f i x))it_eqF E RY (it_eq RY) i (match evg_unroll' f (_observe (f i x)) g' as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x => ex_falso ∘ elim_guarded | inr r => fun _ : guarded' (RetF (inr r)) => RetF r end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r : e_rsp q => iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) (e_nxt r) (k r)) end (evg_unroll_guarded' f (_observe (f i x)) g')) (VisF q (fun r : e_rsp q => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
y: Y i
Heqi0: RetF (inr y) = _observe (f i x)
g': ev_guarded' f (RetF (inr y))it_eqF E RY (it_eq RY) i (match evg_unroll' f (RetF (inr y)) g' as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x => ex_falso ∘ elim_guarded | inr r => fun _ : guarded' (RetF (inr r)) => RetF r end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r : e_rsp q => iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) (e_nxt r) (k r)) end (evg_unroll_guarded' f (RetF (inr y)) g')) (RetF y)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
t: itree E (X +ᵢ Y) i
Heqi0: TauF t = _observe (f i x)
g': ev_guarded' f (TauF t)it_eqF E RY (it_eq RY) i (match evg_unroll' f (TauF t) g' as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x => ex_falso ∘ elim_guarded | inr r => fun _ : guarded' (RetF (inr r)) => RetF r end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r : e_rsp q => iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) (e_nxt r) (k r)) end (evg_unroll_guarded' f (TauF t) g')) (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
Heqi0: VisF q k = _observe (f i x)
g': ev_guarded' f (VisF q k)it_eqF E RY (it_eq RY) i (match evg_unroll' f (VisF q k) g' as t return (guarded' t -> itree' E Y i) with | RetF r0 => match r0 as r1 return (guarded' (RetF r1) -> itree' E Y i) with | inl x => ex_falso ∘ elim_guarded | inr r => fun _ : guarded' (RetF (inr r)) => RetF r end | TauF t => fun _ : guarded' (TauF t) => TauF (iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) i t) | VisF q k => fun _ : guarded' (VisF q k) => VisF q (fun r : e_rsp q => iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) (e_nxt r) (k r)) end (evg_unroll_guarded' f (VisF q k) g')) (VisF q (fun r : e_rsp q => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r))all: apply iter_guarded_aux_unfold. Qed.I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
t: itree E (X +ᵢ Y) i
Heqi0: TauF t = _observe (f i x)
g: guarded' (TauF t)it_eq RY (iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) i t) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
Heqi0: VisF q k = _observe (f i x)
g: guarded' (VisF q k)
r: e_rsp qit_eq RY (iter_guarded_aux (eqn_evg_unroll f EG) (eqn_evg_unroll_guarded f EG) (e_nxt r) (k r)) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r)
Uniqueness still holds.
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))forall (i : I) (x : X i), it_eq RY (g i x) (iter_ev_guarded f EG i x)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))forall (i : I) (x : X i), it_eq RY (g i x) (iter_ev_guarded f EG i x)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X iit_eq_bt E RY R i (g i x) (iter_ev_guarded f EG i x)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X iit_eq_bt E RY R i (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X i
Ha: ev_guarded' f (_observe (f i x))it_eq_bt E RY R i (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
Ha: ev_guarded' f (_observe t)it_eq_bt E RY R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
ot: itree' E (X +ᵢ Y) i
Heqot: ot = _observe t
Ha: ev_guarded' f otit_eq_bt E RY R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X i
t: itree' E (X +ᵢ Y) i
g0: guarded' t
t': itree E (X +ᵢ Y) i
Heqot: t = _observe t'it_eq_bt E RY R i (t' >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (t' >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x, x0: X i
Ha: ev_guarded' f (_observe (f i x0))
IHHa: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_eq_bt E RY R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end))
t': itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe t'it_eq_bt E RY R i (t' >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (t' >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X i
t: itree' E (X +ᵢ Y) i
g0: guarded' t
t': itree E (X +ᵢ Y) i
Heqot: t = _observe t'it_eq_bt E RY R i (t' >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (t' >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X i
t0, t': itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe t'it_eq_t E RY R i ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end) =<< t0) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t0)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
t': itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe t'
r: e_rsp eit_eq_t E RY R (e_nxt r) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end) =<< k r) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X i
t0, t': itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe t'(it_eq_t E RY ° it_eq_t E RY) R i ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end) =<< t0) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t0)I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
t': itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe t'
r: e_rsp e(it_eq_t E RY ° it_eq_t E RY) R (e_nxt r) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end) =<< k r) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r)all: intros ? ? x2 ->; destruct x2; auto.I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X i
t0, t': itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe t'forall (i : I) (x1 x2 : (X +ᵢ Y) i), eqᵢ (X +ᵢ Y) i x1 x2 -> it_eq_t E RY R i match x1 with | inl x => g i x | inr y => Ret' y end match x2 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y endI: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
t': itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe t'
r: e_rsp eforall (i : I) (x1 x2 : (X +ᵢ Y) i), eqᵢ (X +ᵢ Y) i x1 x2 -> it_eq_t E RY R i match x1 with | inl x => g i x | inr y => Ret' y end match x2 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y endI: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x, x0: X i
Ha: ev_guarded' f (_observe (f i x0))
IHHa: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_eq_bt E RY R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end))
t': itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe t'it_eq_bt E RY R i (t' >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (t' >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x, x0: X i
Ha: ev_guarded' f (_observe (f i x0))
IHHa: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_eq_bt E RY R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end))
t': itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe t'it_eqF E RY (it_eq_t E RY R) i (_observe (g i x0)) (_observe (iter_ev_guarded f EG i x0))I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x, x0: X i
Ha: ev_guarded' f (_observe (f i x0))
IHHa: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_eq_bt E RY R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end))
t': itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe t'it_eq_map E RY (it_eq_t E RY R) i (g i x0) (iter_ev_guarded f EG i x0)apply IHHa; auto. Qed.I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), it_eq RY (g i x) (f i x >>= (fun (i0 : I) (r : (X +ᵢ Y) i0) => match r with | inl x0 => g i0 x0 | inr y => Ret' y end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x, x0: X i
Ha: ev_guarded' f (_observe (f i x0))
IHHa: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_eq_bt E RY R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end))
t': itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe t'it_eq_map E RY (it_eq_t E RY R) i (f i x0 >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => g i x | inr y => Ret' y end)) (f i x0 >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end))
And w.r.t. weak bisimilarity, we still perform the same computation.
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X iiter_ev_guarded f EG i x ≈ iter f i xI: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X iiter_ev_guarded f EG i x ≈ iter f i xI: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X iit_wbisim_bt E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i(eq_clo_map ° it_wbisim_bt E (eqᵢ Y)) R i (iter_ev_guarded f EG i x) (iter f i x)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X iiter_ev_guarded f EG i x ≊ ?aI: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i?b ≊ iter f i xI: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X iit_wbisim_bt E (eqᵢ Y) R i ?a ?bI: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i?b ≊ iter f i xI: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X iit_wbisim_bt E (eqᵢ Y) R i (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) ?bI: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X iit_wbisim_bt E (eqᵢ Y) R i (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
g: ev_guarded f (f i x)it_wbisim_bt E (eqᵢ Y) R i (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (f i x >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
g: ev_guarded f tit_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
g: ev_guarded' f (_observe t)it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
ot: itree' E (X +ᵢ Y) i
Heqot: ot = _observe t
g: ev_guarded' f otit_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree' E (X +ᵢ Y) i
g: guarded' t
u: itree E (X +ᵢ Y) i
Heqot: t = _observe uit_wbisim_bt E (eqᵢ Y) R i (u >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (u >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe uit_wbisim_bt E (eqᵢ Y) R i (u >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (u >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree' E (X +ᵢ Y) i
g: guarded' t
u: itree E (X +ᵢ Y) i
Heqot: t = _observe uit_wbisim_bt E (eqᵢ Y) R i (u >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (u >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
y: Y i
u: itree E (X +ᵢ Y) i
Heqot: RetF (inr y) = _observe uit_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i (RetF y) (RetF y)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t, u: itree E (X +ᵢ Y) i
Heqot: TauF t = _observe uit_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t)) (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}) =<< t))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
u: itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe uit_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i (VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r)) (VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => {| _observe := match r0 with | inl x => TauF (iter f i x) | inr y => RetF y end |}) =<< k r))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t, u: itree E (X +ᵢ Y) i
Heqot: TauF t = _observe uit_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t)) (TauF ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}) =<< t))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
u: itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe uit_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i (VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => match r0 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r)) (VisF e (fun r : e_rsp e => (fun (i : I) (r0 : (X +ᵢ Y) i) => {| _observe := match r0 with | inl x => TauF (iter f i x) | inr y => RetF y end |}) =<< k r))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t, u: itree E (X +ᵢ Y) i
Heqot: TauF t = _observe uit_wbisim_t E (eqᵢ Y) R i ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t) ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}) =<< t)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
u: itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe u
r: e_rsp eit_wbisim_t E (eqᵢ Y) R (e_nxt r) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r) ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}) =<< k r)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t, u: itree E (X +ᵢ Y) i
Heqot: TauF t = _observe u(it_wbisim_t E (eqᵢ Y) ° it_wbisim_t E (eqᵢ Y)) R i ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< t) ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}) =<< t)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
u: itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe u
r: e_rsp e(it_wbisim_t E (eqᵢ Y) ° it_wbisim_t E (eqᵢ Y)) R (e_nxt r) ((fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end) =<< k r) ((fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}) =<< k r)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t, u: itree E (X +ᵢ Y) i
Heqot: TauF t = _observe uforall (i : I) (x1 x2 : (X +ᵢ Y) i), eqᵢ (X +ᵢ Y) i x1 x2 -> it_wbisim_t E (eqᵢ Y) R i match x1 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end {| _observe := match x2 with | inl x => TauF (iter f i x) | inr y => RetF y end |}I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
u: itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe u
r: e_rsp eforall (i : I) (x1 x2 : (X +ᵢ Y) i), eqᵢ (X +ᵢ Y) i x1 x2 -> it_wbisim_t E (eqᵢ Y) R i match x1 with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end {| _observe := match x2 with | inl x => TauF (iter f i x) | inr y => RetF y end |}I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t, u: itree E (X +ᵢ Y) i
Heqot: TauF t = _observe u
i0: I
x0: X i0it_wbisim_t E (eqᵢ Y) R i0 (iter_ev_guarded f EG i0 x0) (Tau' (iter f i0 x0))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
u: itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe u
r: e_rsp e
i0: I
x0: X i0it_wbisim_t E (eqᵢ Y) R i0 (iter_ev_guarded f EG i0 x0) (Tau' (iter f i0 x0))all: cbn; apply it_wbisim_up2eat; econstructor; [ exact EatRefl | exact (EatStep EatRefl) | apply CIH ].I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t, u: itree E (X +ᵢ Y) i
Heqot: TauF t = _observe u
i0: I
x0: X i0(it_wbisim_t E (eqᵢ Y) ° it_wbisim_t E (eqᵢ Y)) R i0 (iter_ev_guarded f EG i0 x0) (Tau' (iter f i0 x0))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
u: itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe u
r: e_rsp e
i0: I
x0: X i0(it_wbisim_t E (eqᵢ Y) ° it_wbisim_t E (eqᵢ Y)) R i0 (iter_ev_guarded f EG i0 x0) (Tau' (iter f i0 x0))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe uit_wbisim_bt E (eqᵢ Y) R i (u >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (u >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe uit_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i (_observe (iter_ev_guarded f EG i x0)) (TauF (iter f i x0))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe uit_wbisim_bt E (eqᵢ Y) R i (iter_ev_guarded f EG i x0) (Tau' (iter f i x0))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u?f <= it_wbisim_t E (eqᵢ Y)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u(?f ° it_wbisim_bt E (eqᵢ Y)) R i (iter_ev_guarded f EG i x0) (Tau' (iter f i x0))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u(eat_clo_map ° it_wbisim_bt E (eqᵢ Y)) R i (iter_ev_guarded f EG i x0) (Tau' (iter f i x0))I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe uit_wbisim_bt E (eqᵢ Y) R i (iter_ev_guarded f EG i x0) (iter f i x0)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u?f <= it_wbisim_t E (eqᵢ Y)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u(?f ° it_wbisim_bt E (eqᵢ Y)) R i (iter_ev_guarded f EG i x0) (iter f i x0)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u(eq_clo_map ° it_wbisim_bt E (eqᵢ Y)) R i (iter_ev_guarded f EG i x0) (iter f i x0)I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe uiter_ev_guarded f EG i x0 ≊ ?aI: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u?b ≊ iter f i x0I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe uit_wbisim_bt E (eqᵢ Y) R i ?a ?bI: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u?b ≊ iter f i x0I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe uit_wbisim_bt E (eqᵢ Y) R i (f i x0 >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) ?bnow apply IHg. Qed. End eventually_guarded.I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, _observe (f i x0) = _observe t -> it_wbisim_bt E (eqᵢ Y) R i (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (t >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe uit_wbisim_bt E (eqᵢ Y) R i (f i x0 >>= (fun (i : I) (r : (X +ᵢ Y) i) => match r with | inl x => iter_ev_guarded f EG i x | inr y => Ret' y end)) (f i x0 >>= (fun (i : I) (r : (X +ᵢ Y) i) => {| _observe := match r with | inl x => TauF (iter f i x) | inr y => RetF y end |}))