Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.

Indexed relations

A few standard constructions to work with indexed relations.

From OGS Require Import Prelude.
From OGS.Utils Require Import Psh.

From Coq.Classes Require Export RelationClasses.
From Coinduction Require Export lattice.

#[export] Existing Instance CompleteLattice_dfun.

#[global] Notation "∀ₕ x , R" := (forall_relation (fun x => R%signature))
   (x binder, at level 60).
Notation relᵢ A B := (forall i, A i -> B i -> Prop).

#[global] Notation Reflexiveᵢ R := (forall i, Reflexive (R i)).
#[global] Notation Symmetricᵢ R := (forall i, Symmetric (R i)).
#[global] Notation Transitiveᵢ R := (forall i, Transitive (R i)).
#[global] Notation Equivalenceᵢ R := (forall i, Equivalence (R i)).
#[global] Notation Subrelationᵢ R S := (forall i, subrelation (R i) (S i)).
#[global] Notation PreOrderᵢ R := (forall i, PreOrder (R i)).

Definition eqᵢ {I} (X : psh I) : relᵢ X X := fun _ x y => x = y.
Arguments eqᵢ _ _ _ /.

I: Type
X: psh I

Reflexiveᵢ (eqᵢ X)
I: Type
X: psh I

Reflexiveᵢ (eqᵢ X)
intros ? ?; reflexivity. Qed.
I: Type
X: psh I

Symmetricᵢ (eqᵢ X)
I: Type
X: psh I

Symmetricᵢ (eqᵢ X)
intros ? ? ? ?; now symmetry. Qed.
I: Type
X: psh I

Transitiveᵢ (eqᵢ X)
I: Type
X: psh I

Transitiveᵢ (eqᵢ X)
intros i x y z a b; now transitivity y. Qed. Variant sumᵣ {I} {X1 X2 Y1 Y2 : psh I} (R : relᵢ X1 X2) (S : relᵢ Y1 Y2) : relᵢ (X1 +ᵢ Y1) (X2 +ᵢ Y2) := | RLeft {i x1 x2} : R i x1 x2 -> sumᵣ R S i (inl x1) (inl x2) | RRight {i y1 y2} : S i y1 y2 -> sumᵣ R S i (inr y1) (inr y2) . #[global] Hint Constructors sumᵣ : core.
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S

Equivalenceᵢ (sumᵣ R S)
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S

Equivalenceᵢ (sumᵣ R S)
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S
i: I

Reflexive (sumᵣ R S i)
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S
i: I
Symmetric (sumᵣ R S i)
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S
i: I
Transitive (sumᵣ R S i)
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S
i: I

Reflexive (sumᵣ R S i)
intros []; eauto.
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S
i: I

Symmetric (sumᵣ R S i)
intros ? ? []; econstructor; symmetry; eauto.
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S
i: I

Transitive (sumᵣ R S i)
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S
i: I
x, y, z: (X +ᵢ Y) i
H1: sumᵣ R S i x y
H2: sumᵣ R S i y z

sumᵣ R S i x z
dependent destruction H1; dependent destruction H2; econstructor; etransitivity; eauto. Qed. Definition seqᵢ {I} {X Y Z : psh I} (R0 : relᵢ X Y) (R1 : relᵢ Y Z) : relᵢ X Z := fun i x z => exists y, R0 i x y /\ R1 i y z. #[global] Infix "⨟" := (seqᵢ) (at level 120). #[global] Notation "u ⨟⨟ v" := (ex_intro _ _ (conj u v)) (at level 70). #[global] Hint Unfold seqᵢ : core.
I: Type
X, Y, Z: psh I

Proper (leq ==> leq ==> leq) seqᵢ
I: Type
X, Y, Z: psh I

Proper (leq ==> leq ==> leq) seqᵢ
I: Type
X, Y, Z: psh I
x, y: relᵢ X Y
H1: x <= y
x0, y0: relᵢ Y Z
H2: x0 <= y0
a: I
a0: X a
a1: Z a
z: Y a
H: x a a0 z
H0: x0 a z a1

(y ⨟ y0) a a0 a1
I: Type
X, Y, Z: psh I
x, y: relᵢ X Y
H1: x <= y
x0, y0: relᵢ Y Z
H2: x0 <= y0
a: I
a0: X a
a1: Z a
z: Y a
H: x a a0 z
H0: x0 a z a1

y a a0 z /\ y0 a z a1
I: Type
X, Y, Z: psh I
x, y: relᵢ X Y
H1: x <= y
x0, y0: relᵢ Y Z
H2: x0 <= y0
a: I
a0: X a
a1: Z a
z: Y a
H: x a a0 z
H0: x0 a z a1

y a a0 z
I: Type
X, Y, Z: psh I
x, y: relᵢ X Y
H1: x <= y
x0, y0: relᵢ Y Z
H2: x0 <= y0
a: I
a0: X a
a1: Z a
z: Y a
H: x a a0 z
H0: x0 a z a1
y0 a z a1
I: Type
X, Y, Z: psh I
x, y: relᵢ X Y
H1: x <= y
x0, y0: relᵢ Y Z
H2: x0 <= y0
a: I
a0: X a
a1: Z a
z: Y a
H: x a a0 z
H0: x0 a z a1

y0 a z a1
now apply H2. Qed. Definition squareᵢ {I} {X : psh I} : mon (relᵢ X X) := {| body R := R ⨟ R ; Hbody _ _ H := seq_mon _ _ H _ _ H |}. Definition revᵢ {I} {X Y : psh I} (R : relᵢ X Y) : relᵢ Y X := fun i x y => R i y x. #[global] Hint Unfold revᵢ : core.
I: Type
X, Y: psh I

Proper (leq ==> leq) revᵢ
I: Type
X, Y: psh I

Proper (leq ==> leq) revᵢ
firstorder. Qed. Definition converseᵢ {I} {X : psh I} : mon (relᵢ X X) := {| body := revᵢ ; Hbody := rev_mon |}. Definition orᵢ {I} {X Y : psh I} (R S : relᵢ X Y) : relᵢ X Y := fun i x y => R i x y \/ S i x y. #[global] Infix "∨ᵢ" := (orᵢ) (at level 70).
I: Type
X, Y: psh I

Proper (leq ==> leq ==> leq) orᵢ
I: Type
X, Y: psh I

Proper (leq ==> leq ==> leq) orᵢ
firstorder. Qed.
I: Type
X: psh I
R: relᵢ X X

eqᵢ X <= R -> Reflexiveᵢ R
I: Type
X: psh I
R: relᵢ X X

eqᵢ X <= R -> Reflexiveᵢ R
I: Type
X: psh I
R: relᵢ X X
H: eqᵢ X <= R
i: I
x: X i

R i x x
now apply H. Qed.
I: Type
X: psh I
R: relᵢ X X
H: Reflexiveᵢ R

eqᵢ X <= R
I: Type
X: psh I
R: relᵢ X X
H: Reflexiveᵢ R

eqᵢ X <= R
intros ? ? ? ->; now reflexivity. Qed.
I: Type
X: psh I
R: relᵢ X X

converseᵢ R <= R -> Symmetricᵢ R
I: Type
X: psh I
R: relᵢ X X

converseᵢ R <= R -> Symmetricᵢ R
I: Type
X: psh I
R: relᵢ X X
H: converseᵢ R <= R
i: I
x, y: X i
H0: R i x y

R i y x
now apply H. Qed.
I: Type
X: psh I
R: relᵢ X X
H: Symmetricᵢ R

converseᵢ R <= R
I: Type
X: psh I
R: relᵢ X X
H: Symmetricᵢ R

converseᵢ R <= R
intros ? ? ? ?; now symmetry. Qed.
I: Type
X: psh I
R: relᵢ X X

squareᵢ R <= R -> Transitiveᵢ R
I: Type
X: psh I
R: relᵢ X X

squareᵢ R <= R -> Transitiveᵢ R
I: Type
X: psh I
R: relᵢ X X
H: squareᵢ R <= R
i: I
x, y, z: X i
r: R i x y
s: R i y z

R i x z
apply H; now exists y. Qed.
I: Type
X: psh I
R: relᵢ X X
H: Transitiveᵢ R

squareᵢ R <= R
I: Type
X: psh I
R: relᵢ X X
H: Transitiveᵢ R

squareᵢ R <= R
I: Type
X: psh I
R: relᵢ X X
H: Transitiveᵢ R
a: I
a0, a1, y: X a
H0: R a a0 y
H1: R a y a1

R a a0 a1
now transitivity y. Qed.
I: Type
X: psh I
R: relᵢ X X

eqᵢ X <= R -> converseᵢ R <= R -> squareᵢ R <= R -> Equivalenceᵢ R
I: Type
X: psh I
R: relᵢ X X

eqᵢ X <= R -> converseᵢ R <= R -> squareᵢ R <= R -> Equivalenceᵢ R
I: Type
X: psh I
R: relᵢ X X
H: eqᵢ X <= R
H0: converseᵢ R <= R
H1: squareᵢ R <= R
i: I

Reflexive (R i)
I: Type
X: psh I
R: relᵢ X X
H: eqᵢ X <= R
H0: converseᵢ R <= R
H1: squareᵢ R <= R
i: I
Symmetric (R i)
I: Type
X: psh I
R: relᵢ X X
H: eqᵢ X <= R
H0: converseᵢ R <= R
H1: squareᵢ R <= R
i: I
Transitive (R i)
I: Type
X: psh I
R: relᵢ X X
H: eqᵢ X <= R
H0: converseᵢ R <= R
H1: squareᵢ R <= R
i: I

Symmetric (R i)
I: Type
X: psh I
R: relᵢ X X
H: eqᵢ X <= R
H0: converseᵢ R <= R
H1: squareᵢ R <= R
i: I
Transitive (R i)
I: Type
X: psh I
R: relᵢ X X
H: eqᵢ X <= R
H0: converseᵢ R <= R
H1: squareᵢ R <= R
i: I

Transitive (R i)
now apply build_transitive. Qed.