Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.

The OGS Game (§ 5.1 and 5.2)

From OGS Require Import Prelude.
From OGS.Utils Require Import Rel.
From OGS.Ctx Require Import All Ctx.
From OGS.OGS Require Import Obs.
From OGS.ITree Require Import Event ITree.

Reserved Notation "↓⁺ Ψ" (at level 9).
Reserved Notation "↓⁻ Ψ" (at level 9).
Reserved Notation "↓[ p ] Ψ" (at level 9).

Games (§ 5.1)

Levy and Staton's general notion of game.

An half games (Def 5.1) is composed of "moves" as an indexed family of types, and a "next" map computing the next index following a move.

Record half_game (I J : Type) := {
 g_move : I -> Type ;
 g_next : forall i, g_move i -> J
}.

Action (h_actv) and reaction (h_pasv) functors (Def 5.8)

Definition h_actv {I J} (H : half_game I J) (X : psh J) : psh I :=
  fun i => { m : H.(g_move) i & X (H.(g_next) m) } .

Definition h_actvR {I J} (H : half_game I J) {X Y : psh J} (R : relᵢ X Y)
  : relᵢ (h_actv H X) (h_actv H Y) :=
  fun i u v => exists p : projT1 u = projT1 v , R _ (rew p in projT2 u) (projT2 v) .

Definition h_pasv {I J} (H : half_game I J) (X : psh J) : psh I :=
  fun i => forall (m : H.(g_move) i), X (H.(g_next) m) .

Definition h_pasvR {I J} (H : half_game I J) {X Y : psh J} (R : relᵢ X Y)
  : relᵢ (h_pasv H X) (h_pasv H Y) := fun i u v => forall m, R _ (u m) (v m) .

A game (Def 5.4) is composed of two compatible half games.

Record game (I J : Type) : Type := {
  g_client : half_game I J ;
  g_server : half_game J I
}.

Given a game, we can construct an event. See ITree/Event.v

Definition e_of_g {I J} (G : game I J) : event I I :=
  {| e_qry := fun i => G.(g_client).(g_move) i ;
     e_rsp := fun i q => G.(g_server).(g_move) (G.(g_client).(g_next) q) ;
     e_nxt := fun i q r => G.(g_server).(g_next) r |} .

The OGS Game (§ 5.2)

First let us define a datatype for polarities, active and passive (called "waiting") in the paper.

Variant polarity : Type := Act | Pas .
Derive NoConfusion for polarity.

Equations p_switch : polarity -> polarity :=
  p_switch Act := Pas ;
  p_switch Pas := Act .
#[global] Notation "p ^" := (p_switch p) (at level 5).

Section with_param.

We consider an observation structure, given by a set of types T, a notion of contexts C and a operator giving the observations and their domain. See Ctx/Family.v and OGS/Obs.v.

  Context `{CC : context T C} {obs : obs_struct T C}.

Interleaved contexts (Def 5.12) are given by the free context structure over C.

  Definition ogs_ctx := ctx C.

We define the collapsing functions (Def 5.13).

  Equations join_pol : polarity -> ogs_ctx -> C :=
    join_pol Act ∅ₓ       := ∅ ;
    join_pol Act (Ψ ▶ₓ Γ) := join_pol Pas Ψ +▶ Γ ;
    join_pol Pas ∅ₓ       := ∅ ;
    join_pol Pas (Ψ ▶ₓ Γ) := join_pol Act Ψ .

  Notation "↓⁺ Ψ" := (join_pol Act Ψ).
  Notation "↓⁻ Ψ" := (join_pol Pas Ψ).
  Notation "↓[ p ] Ψ" := (join_pol p Ψ).

Finally we define the OGS half-game and game (Def 5.15).

  Definition ogs_hg : half_game ogs_ctx ogs_ctx :=
    {| g_move Ψ := obs∙ ↓⁺Ψ ;
       g_next Ψ m := Ψ ▶ₓ m_dom m |} .

  Definition ogs_g : game ogs_ctx ogs_ctx :=
    {| g_client := ogs_hg ;
       g_server := ogs_hg  |} .

We define the event of OGS moves.

  Definition ogs_e : event ogs_ctx ogs_ctx := e_of_g ogs_g.

And finally we define active OGS strategies and passive OGS strategies.

  Definition ogs_act (Δ : C) : psh ogs_ctx := itree ogs_e (fun _ => obs∙ Δ).
  Definition ogs_pas (Δ : C) : psh ogs_ctx := h_pasv ogs_hg (ogs_act Δ).

End with_param.

#[global] Notation "↓⁺ Ψ" := (join_pol Act Ψ).
#[global] Notation "↓⁻ Ψ" := (join_pol Pas Ψ).
#[global] Notation "↓[ p ] Ψ" := (join_pol p Ψ).